1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
use std::collections::HashMap;
use std::fs;
// print only with debug_assertions
macro_rules! dprint {
($($x:tt)*) => {
#[cfg(debug_assertions)]
print!($($x)*)
}
}
// // println only with debug_assertions
// macro_rules! dprintln {
// ($($x:tt)*) => {
// #[cfg(debug_assertions)]
// println!($($x)*)
// }
// }
// Point to one or more ranges of a string, useful for highlighting parts of string
macro_rules! highlight_debug {
($hi_col:expr, $str:expr $(, ($pos:tt -> $endpos:tt))*) => {
for (i, _c) in $str.char_indices() {
if false $(|| (i >= $pos) && (i < $endpos))* {
dprint!("{}{}\x1b[0m", $hi_col, _c);
} else {
dprint!("{}", _c);
}
}
dprint!("\n");
};
($str:expr, $pos:expr, $endpos:expr) => {
highlight_debug!("\x1b[7m", $str, ($pos -> $endpos))
};
($str:expr, $pos:expr) => {
highlight_debug!($str, $pos, $pos+1)
};
}
#[derive(Debug)]
pub struct MacroProcessor {
macros: HashMap<String, String>,
}
impl MacroProcessor {
pub fn new() -> Self {
Self {
macros: HashMap::new(),
}
}
pub fn define_macro(&mut self, name: String, body: String) {
self.macros.insert(name, body);
}
/// This expands a macro definition, and it executes builtin functions, like define
/// Currently, you cannot overwrite builtin's.
/// This is partly by design, and I don't currently see why I would want that.
/// In the future, this may change
///
/// (The HashMap might become a HashMap<String, Box<dyn FnMut>> or something similar.
/// Then, all builtins would also be functions, and "normal" macros, would simply
/// be closures returning the string)
fn expand_macro(&mut self, macro_name: &str, args: &mut [String]) -> String {
if macro_name == "define" {
if args.len() < 1 {
println!("Missing argument(s) to `define`, found {} but expected 1 or 2", args.len());
return String::new();
}
let arg0 = self.process_input(&args[0]);
if args.len() > 1 {
let arg1 = self.process_input(&args[1]);
self.define_macro(arg0, arg1);
} else {
self.define_macro(arg0, String::new());
}
return String::new();
}
if macro_name == "ifdef" {
if args.len() < 2 {
println!("Missing argument(s) to `ifdef`, found {} but expected 2 or 3", args.len());
return String::new();
}
// We need to expand the first argument here as well, but we need to make the parser
// support literal, and phrase strings
if self.macros.contains_key(&args[0]) {
return self.process_input(&args[1]);
}
if args.len() > 2 {
return self.process_input(&args[2]);
}
return String::new();
}
if macro_name == "ifndef" {
if args.len() < 2 {
println!("Missing argument(s) to `ifndef`, found {} but expected 2 or 3", args.len());
return String::new();
}
// We need to expand the first argument here as well, but we need to make the parser
// support literal, and phrase strings
if !self.macros.contains_key(&args[0]) {
return self.process_input(&args[1]);
}
if args.len() > 2 {
return self.process_input(&args[2]);
}
return String::new();
}
if macro_name == "ifeq" {
if args.len() < 3 {
println!("Missing argument(s) to `ifeq`, found {} but expected 3 or 4", args.len());
return String::new();
}
let arg0 = self.process_input(&args[0]);
let arg1 = self.process_input(&args[1]);
if arg0 == arg1 {
return self.process_input(&args[2]);
}
if args.len() > 3 {
return self.process_input(&args[3]);
}
return String::new();
}
if macro_name == "ifneq" {
if args.len() < 3 {
println!("Missing argument(s) to `ifneq`, found {} but expected 3 or 4", args.len());
return String::new();
}
let arg0 = self.process_input(&args[0]);
let arg1 = self.process_input(&args[1]);
if arg0 != arg1 {
return self.process_input(&args[2]);
}
if args.len() > 3 {
return self.process_input(&args[3]);
}
return String::new();
}
if macro_name == "include" {
if args.len() < 1 {
println!("Missing argument(s) to `include`, found {} but expected 1", args.len());
return String::new();
}
let arg0 = self.process_input(&args[0]);
let input_file = fs::read_to_string(&arg0).expect("Failed to read input file");
return self.process_input(&input_file);
}
//Expand macro name? somwhat unsure on how to do this safely
//let macro_name = self.process_input(macro_name);
let Some(macro_body) = self.macros.get(macro_name) else {
return format!("{}", macro_name);
};
let mut expanded = macro_body.clone();
for (i, arg) in args.iter().enumerate() {
let placeholder = format!("${}", i + 1);
expanded = expanded.replace(&placeholder, arg);
}
expanded
}
pub fn process_input(&mut self, input: &str) -> String {
let mut output = String::new();
let mut state = ParserState::Normal;
let mut state_previous = ParserState::Normal;
let mut macro_name = String::new();
let mut macro_args = Vec::new();
let mut argument = String::new();
let mut macro_name_start = 0;
let mut skip_next_line_ending = false;
let mut in_quote_single = false;
let mut in_quote_double = false;
for (i, c) in input.char_indices() {
highlight_debug!(input, macro_name_start, i);
match state {
ParserState::Normal => {
macro_name_start = i;
if skip_next_line_ending && (c == '\n') {
skip_next_line_ending = false;
continue;
}
if c.is_alphanumeric() {
state = ParserState::InMacro;
state_previous = ParserState::Normal;
macro_name.push(c);
} else {
output.push(c);
}
}
ParserState::InMacro => {
if c.is_alphanumeric() || c == '_' {
macro_name.push(c);
} else if c == '(' {
state = ParserState::InMacroArgs;
state_previous = ParserState::InMacro;
} else {
if self.macros.contains_key(¯o_name) {
highlight_debug!("\x1b[32m\x1b[7m", input, (macro_name_start -> i));
}
if macro_name == "DNL" {
skip_next_line_ending = c != '\n';
} else {
let expanded = self.expand_macro(¯o_name, &mut []);
output.push_str(&expanded);
output.push(c);
}
macro_name.clear();
state = ParserState::Normal;
state_previous = ParserState::InMacro;
}
}
ParserState::InMacroArgs => {
if c == ')' {
highlight_debug!("\x1b[32m\x1b[7m", input, (macro_name_start -> i));
macro_args.push(argument.trim().to_string());
let expanded = self.expand_macro(¯o_name, &mut macro_args);
output.push_str(&expanded);
state = ParserState::Normal;
state_previous = ParserState::InMacroArgs;
macro_name.clear();
macro_args.clear();
argument.clear();
} else if c == ',' {
macro_args.push(argument.trim().to_string());
argument.clear();
} else {
argument.push(c);
}
}
}
}
// Handle cases where the text ends with a macro without arguments
if !macro_name.is_empty() {
output.push_str(&self.expand_macro(¯o_name, &mut []));
}
output
}
}
#[derive(Debug, PartialEq)]
enum ParserState {
Normal,
InMacro,
InMacroArgs,
}
|