aboutsummaryrefslogtreecommitdiff
path: root/hydroponics_broker.ino
blob: a2e0b4393a26211c139d3e3ad8a30e50ba0d3fe3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#include <OneWire.h>
#include <DallasTemperature.h>
#include <WiFi.h>
#include <PubSubClient.h>
#include <WebServer.h>
#include <Update.h>
#include "secrets.h"

#define WIFI_CHECK_INTERVAL    30000
#define SENSOR_SAMPLE_INTERVAL 5000
#define MQTT_PUSH_INTERVAL     60000

#define SAMPLE_HISTORY_N       20     // 60*5s => 5m running average
#define PIN_ONEWIRE            4
#define PIN_TDS                34
#define VREF                   3.3
float ec_calibration = 0.98f;

#define CTEMP temperatures[sensors_current_i]
#define CTDS  tds[sensors_current_i]
#define CEC   ec[sensors_current_i]

const char *ssid = WIFI_SSID;
const char *password = WIFI_PASSWORD;

const char *mqtt_broker = MQTT_BROKER;
const char *topic_temp = "emqx/nft_system_temp";
const char *topic_tds = "emqx/nft_system_tds";
const char *topic_ec = "emqx/nft_system_ec";
const char *mqtt_username = MQTT_USERNAME;
const char *mqtt_password = MQTT_PASSWORD;
const int mqtt_port = 1883;

WiFiClient espClient;
PubSubClient client(espClient);

OneWire oneWire(PIN_ONEWIRE);
DallasTemperature sensors(&oneWire);

int sensors_current_i = 0;
bool sensors_initialized = false;

float temperatures[SAMPLE_HISTORY_N];
float temperatures_total = 0.0f;
float temperatures_average = 0.0f;
bool temperature_mqtt_last_publish_status = false;

float tds[SAMPLE_HISTORY_N];
float tds_total = 0.0f;
float tds_average = 0.0f;
bool tds_mqtt_last_publish_status = false;

float ec[SAMPLE_HISTORY_N];
float ec_total = 0.0f;
float ec_average = 0.0f;
bool ec_mqtt_last_publish_status = false;

unsigned long lastWifiCheck = 0;
unsigned long lastSensorSample = 0;
unsigned long lastMqttPublish = 0;

WebServer server(80);
const char *serverIndex PROGMEM =
  "<!DOCTYPE html>"
  "<html>"
    "<head><style type='text/css'>"
    "div {display:flex;gap:1em;}"
    "</style></head>" 
    "<body>"
      "<div><strong>Sensors</strong><span>Initialized: <em>%d</em></span><span>Last sample: <em>%.1fs</em> ago</span></div><hr>"
      "<div><strong>Temperature</strong><span><em>%.1fC</em> ~ <em>%.1fC</em></span><span>MQTT: <em>%d</em></span></div><hr>"
      "<div><strong>TDS</strong><span><em>%.0f</em> ~ <em>%.0f</em></span><span>MQTT: <em>%d</em></span></div><hr>"
      "<div><strong>EC</strong><span><em>%.1f</em> ~ <em>%.1f</em></span><span>MQTT: <em>%d</em></span></div><hr>"
      "<div><strong>MQTT</strong><span>Last <em>%.1fs</em> ago</span></div><hr>"
      "<form method='POST' action='/update' enctype='multipart/form-data'><input type='file' name='update'><input type='submit' value='Update'></form>"
    "</body>"
  "</html>";

void setup_wifi() {
  delay(3);
  Serial.println();
  Serial.print("Connecting to ");
  Serial.println(ssid);

  WiFi.mode(WIFI_STA);
  WiFi.begin(ssid, password);

  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }

  randomSeed(micros());

  Serial.println("");
  Serial.println("WiFi connected");
  Serial.println("IP address: ");
  Serial.println(WiFi.localIP());
}

void reconnect() {
  while (!client.connected()) {
    Serial.print("Attempting MQTT connection...");
    String client_id = "esp32-client-";
    client_id += String(WiFi.macAddress());
    if (client.connect(client_id.c_str(), mqtt_username, mqtt_password)) {
      Serial.println("connected");
    } else {
      Serial.print("failed, rc=");
      Serial.print(client.state());
      Serial.println(" try again in 5 seconds");
      delay(5000);
    }
  }
}

void initialize_sensors() {
  sensors.begin();
  pinMode(PIN_TDS, INPUT);
  for (int i = 0; i < SAMPLE_HISTORY_N; i++) {
    temperatures[i] = 0.0f;
  }
}

void setup() {
    Serial.begin(115200);
    Serial.println("init");
    initialize_sensors();
    setup_wifi();
    client.setServer(mqtt_broker, mqtt_port);

    server.on("/", HTTP_GET, []() {
      unsigned long now = millis();
      server.sendHeader("Connection", "close");
      char buffer[strlen(serverIndex)+64];
      sprintf(
        buffer, serverIndex,
        sensors_initialized, (now - lastSensorSample)/1000,
        CTEMP, temperatures_average, temperature_mqtt_last_publish_status,
        CTDS, tds_average, tds_mqtt_last_publish_status,
        CEC, ec_average, ec_mqtt_last_publish_status,
        (now - lastMqttPublish)/1000
      );
      server.send(200, "text/html", buffer);
    });
    server.on(
      "/update", HTTP_POST,
      []() {
        server.sendHeader("Connection", "close");
        server.send(200, "text/plain", (Update.hasError()) ? "FAIL" : "OK");
        ESP.restart();
      },
      []() {
        HTTPUpload &upload = server.upload();
        if (upload.status == UPLOAD_FILE_START) {
          Serial.setDebugOutput(true);
          Serial.printf("Update: %s\n", upload.filename.c_str());
          if (!Update.begin()) {  //start with max available size
            Update.printError(Serial);
          }
        } else if (upload.status == UPLOAD_FILE_WRITE) {
          if (Update.write(upload.buf, upload.currentSize) != upload.currentSize) {
            Update.printError(Serial);
          }
        } else if (upload.status == UPLOAD_FILE_END) {
          if (Update.end(true)) {  //true to set the size to the current progress
            Serial.printf("Update Success: %u\nRebooting...\n", upload.totalSize);
          } else {
            Update.printError(Serial);
          }
          Serial.setDebugOutput(false);
        } else {
          Serial.printf(F("Update Failed Unexpectedly (likely broken connection): status=%d\n"), upload.status);
        }
      }
    );
    server.begin();
}

void updateSensorValues() {
    sensors.requestTemperatures();

    sensors_current_i++;
    if (sensors_current_i >= SAMPLE_HISTORY_N) {
      sensors_current_i = 0;
      sensors_initialized = true;
    }
    
    // Temperature 1
    temperatures_total -= CTEMP;
    CTEMP = sensors.getTempCByIndex(0);
    temperatures_total += CTEMP;
    //temperatures_average = temperatures_total / SAMPLE_HISTORY_N;
    temperatures_average = getMedianNum(temperatures, SAMPLE_HISTORY_N);

    // TDS 1/EC 1
    ec_total -= CEC;
    tds_total -= CTDS;
    float rawEc = analogRead(PIN_TDS) * VREF / 4096.0; // read the analog value more stable by the median filtering algorithm, and convert to voltage value
    float temperatureCoefficient = 1.0 + 0.02 * (temperatures_average - 25.0); // temperature compensation formula: fFinalResult(25^C) = fFinalResult(current)/(1.0+0.02*(fTP-25.0));
    CEC = (rawEc / temperatureCoefficient) * ec_calibration; // temperature and calibration compensation
    ec_total += CEC;
    ec_average = ec_total / SAMPLE_HISTORY_N;
    CTDS = (133.42 * pow(CEC, 3) - 255.86 * CEC * CEC + 857.39 * CEC) * 0.5; //convert voltage value to tds value
    tds_total += CTDS;
    tds_average = tds_total / SAMPLE_HISTORY_N;
    
    Serial.print(F("TDS:")); Serial.println(CTDS);
    Serial.print(F("EC:")); Serial.println(CEC, 2);

    Serial.print(F("   "));
    Serial.print(CTEMP);
    Serial.print(F(" C"));
    Serial.print(F("~"));
    Serial.print(temperatures_average);
    Serial.println(F(" C"));

}

void loop() {
    unsigned long now = millis();

    if ((WiFi.status() != WL_CONNECTED) && (now - lastWifiCheck > WIFI_CHECK_INTERVAL)) {
      Serial.println("Reconnecting to WiFi...");
      WiFi.disconnect();
      WiFi.reconnect();
      lastWifiCheck = now;
    }
    server.handleClient();
    if (!client.connected()) {
      reconnect();
    }
    client.loop();
    
    now = millis();

    if (now - lastSensorSample > SENSOR_SAMPLE_INTERVAL) {
      lastSensorSample = now;
      updateSensorValues();
    }
    
    if (now - lastMqttPublish > MQTT_PUSH_INTERVAL) {
        lastMqttPublish = now;

        if (sensors_initialized) {
          // Publish temperature
          char result[8]; // Buffer big enough for 7-character float
          dtostrf(temperatures_average, 6, 1, result); // Leave room for too large numbers!
          temperature_mqtt_last_publish_status = client.publish(topic_temp, result);
          Serial.println("Published temperature update");
          // Publish tds
          result[8]; // Buffer big enough for 7-character float
          dtostrf(tds_average, 6, 0, result); // Leave room for too large numbers!
          tds_mqtt_last_publish_status = client.publish(topic_tds, result);
          Serial.println("Published tds update");
          // Publish ec
          result[8]; // Buffer big enough for 7-character float
          dtostrf(ec_average, 6, 1, result); // Leave room for too large numbers!
          ec_mqtt_last_publish_status = client.publish(topic_ec, result);
          Serial.println("Published ec update");
        }
    } 
}


// median filtering algorithm
// https://randomnerdtutorials.com/arduino-tds-water-quality-sensor/
int getMedianNum(int bArray[], int iFilterLen){
  int bTab[iFilterLen];
  for (byte i = 0; i<iFilterLen; i++)
  bTab[i] = bArray[i];
  int i, j, bTemp;
  for (j = 0; j < iFilterLen - 1; j++) {
    for (i = 0; i < iFilterLen - j - 1; i++) {
      if (bTab[i] > bTab[i + 1]) {
        bTemp = bTab[i];
        bTab[i] = bTab[i + 1];
        bTab[i + 1] = bTemp;
      }
    }
  }
  if ((iFilterLen & 1) > 0){
    bTemp = bTab[(iFilterLen - 1) / 2];
  }
  else {
    bTemp = (bTab[iFilterLen / 2] + bTab[iFilterLen / 2 - 1]) / 2;
  }
  return bTemp;
}

float fgetMedianNum(float bArray[], int iFilterLen){
  float bTab[iFilterLen];
  for (byte i = 0; i<iFilterLen; i++)
  bTab[i] = bArray[i];
  int i, j, bTemp;
  for (j = 0; j < iFilterLen - 1; j++) {
    for (i = 0; i < iFilterLen - j - 1; i++) {
      if (bTab[i] > bTab[i + 1]) {
        bTemp = bTab[i];
        bTab[i] = bTab[i + 1];
        bTab[i + 1] = bTemp;
      }
    }
  }
  if ((iFilterLen & 1) > 0){
    bTemp = bTab[(iFilterLen - 1) / 2];
  }
  else {
    bTemp = (bTab[iFilterLen / 2] + bTab[iFilterLen / 2 - 1]) / 2;
  }
  return bTemp;
}