summaryrefslogtreecommitdiff
path: root/src/macro_processor/macro_processor.rs
blob: 4a46a62ca9148efc81c3adf8e7301fc5418a5ffe (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
use std::collections::HashMap;
use std::fs;
use std::process::Command;

// print only with debug_assertions
macro_rules! dprint {
    ($($x:tt)*) => {
        #[cfg(debug_assertions)]
        print!($($x)*)
    }
}

// // println only with debug_assertions
// macro_rules! dprintln {
//     ($($x:tt)*) => {
//         #[cfg(debug_assertions)]
//         println!($($x)*)
//     }
// }

// Point to one or more ranges of a string, useful for highlighting parts of string
macro_rules! highlight_debug {
    ($hi_col:expr, $str:expr $(, ($pos:tt  -> $endpos:tt))*) => {
        for (i, _c) in $str.char_indices() {
            if false $(|| (i >= $pos) && (i < $endpos))* {
                dprint!("{}{}\x1b[0m", $hi_col, _c);
            } else {
                dprint!("{}", _c);
            }
        }
        dprint!("\n");
    };
    ($str:expr, $pos:expr, $endpos:expr) => {
        highlight_debug!("\x1b[7m", $str, ($pos -> $endpos))
    };
    ($str:expr, $pos:expr) => {
        highlight_debug!($str, $pos, $pos+1)
    };
}

/// Builtin for defining a new macro
fn smp_builtin_define(smp: &mut MacroProcessor, macro_name: &str, args: &mut [String]) -> String {
    if args.len() < 1 {
        return macro_name.to_string();
    }
    let arg0 = smp.process_input(&args[0]);
    if args.len() > 1 {
        let arg1 = smp.process_input(&args[1]);
        smp.define_macro(arg0, arg1);
    } else {
        smp.define_macro(arg0, String::new());
    }
    String::new()
}

/// If macro is defined, return second argument, else return third argument if provided
fn smp_builtin_ifdef(smp: &mut MacroProcessor, macro_name: &str, args: &mut [String]) -> String {
    if args.len() < 2 {
        return macro_name.to_string();
    }
    // We need to expand the first argument here as well, but we need to make the parser
    // support literal, and phrase strings
    if smp.macros.contains_key(&args[0]) {
        return smp.process_input(&args[1]);
    }
    if args.len() > 2 {
        return smp.process_input(&args[2]);
    }
    String::new()
}

/// If macro is not defined, return second argument, else return third argument if provided
fn smp_builtin_ifndef(smp: &mut MacroProcessor, macro_name: &str, args: &mut [String]) -> String {
    if args.len() < 2 {
        return macro_name.to_string();
    }
    // We need to expand the first argument here as well, but we need to make the parser
    // support literal, and phrase strings
    if !smp.macros.contains_key(&args[0]) {
        return smp.process_input(&args[1]);
    }
    if args.len() > 2 {
        return smp.process_input(&args[2]);
    }
    String::new()
}

/// If arguments are equal, return third argument, else return fourth argument if provided
fn smp_builtin_ifeq(smp: &mut MacroProcessor, macro_name: &str, args: &mut [String]) -> String {
    if args.len() < 3 {
        return macro_name.to_string();
    }
    let arg0 = smp.process_input(&args[0]);
    let arg1 = smp.process_input(&args[1]);
    if arg0 == arg1 {
        return smp.process_input(&args[2]);
    }
    if args.len() > 3 {
        return smp.process_input(&args[3]);
    }
    String::new()
}

/// If arguments are not equal, return third argument, else return fourth argument if provided
fn smp_builtin_ifneq(smp: &mut MacroProcessor, macro_name: &str, args: &mut [String]) -> String {
    if args.len() < 3 {
        return macro_name.to_string();
    }
    let arg0 = smp.process_input(&args[0]);
    let arg1 = smp.process_input(&args[1]);
    if arg0 != arg1 {
        return smp.process_input(&args[2]);
    }
    if args.len() > 3 {
        return smp.process_input(&args[3]);
    }
    return String::new();
}

/// Include a new file, and process it normally. There is no loop protection here!
fn smp_builtin_include(smp: &mut MacroProcessor, macro_name: &str, args: &mut [String]) -> String {
    if args.len() < 1 {
        return macro_name.to_string();
    }
    let arg0 = smp.process_input(&args[0]);
    let input_file = fs::read_to_string(&arg0).expect("Failed to read input file");
    return smp.process_input(&input_file);
}

/// Simply execute argument as shell command
fn smp_builtin_shell(smp: &mut MacroProcessor, macro_name: &str, args: &mut [String]) -> String {
    if args.len() < 1 {
        return macro_name.to_string();
    }
    let arg0 = smp.process_input(&args[0]);
    let res = Command::new("sh").arg("-c").arg(arg0).output();
    match res {
        Ok(output) => String::from_utf8(output.stdout).expect("SMP1"),
        Err(_) => String::new(),
    }
}

/// Would like one that is better than this tbh
fn smp_builtin_expr(smp: &mut MacroProcessor, macro_name: &str, args: &mut [String]) -> String {
    if args.len() < 1 {
        return macro_name.to_string();
    }

    for arg in args.iter_mut() {
        *arg = smp.process_input(&arg);
    }

    let res = Command::new("expr").args(args).output();
    match res {
        Ok(output) => String::from_utf8(output.stdout).expect("SMP1"),
        Err(_) => String::new(),
    }
}

/// Types of macros, this is to make it easy to store both functions and strings
pub enum MacroType {
    /// When expanded, the associated function will be expanded
    Function(fn(smp: &mut MacroProcessor, macro_name: &str, args: &mut [String]) -> String),
    /// Will be expanded in-place to the String
    String(String),
}

/// Possible parser states
#[derive(Debug, PartialEq)]
enum ParserState {
    Normal,
    InMacro,
    InMacroArgs,
}

/// Defines a MacroProcessor object, with it's associated state
/// the state mostly includes the defined macros
pub struct MacroProcessor {
    /// All currently defined macros in this MacroProcessor
    macros: HashMap<String, MacroType>,
}

impl MacroProcessor {

    pub fn new() -> Self {
        let mut smp = Self {
            macros: HashMap::new(),
        };
        smp.define_builtins();
        smp
    }

    /// Bootstrapping-function for defining all builtins,
    /// the same way all other macros might be defined
    fn define_builtins(&mut self) {
        self.define_macro_fn(
            String::from("define"),
            MacroType::Function(smp_builtin_define),
        );
        self.define_macro_fn(
            String::from("ifdef"),
            MacroType::Function(smp_builtin_ifdef),
        );
        self.define_macro_fn(
            String::from("ifndef"),
            MacroType::Function(smp_builtin_ifndef),
        );
        self.define_macro_fn(String::from("ifeq"), MacroType::Function(smp_builtin_ifeq));
        self.define_macro_fn(
            String::from("ifneq"),
            MacroType::Function(smp_builtin_ifneq),
        );
        self.define_macro_fn(
            String::from("include"),
            MacroType::Function(smp_builtin_include),
        );
        self.define_macro_fn(
            String::from("shell"),
            MacroType::Function(smp_builtin_shell),
        );
        self.define_macro_fn(String::from("expr"), MacroType::Function(smp_builtin_expr));
        // format('Result id %d', 3282)
    }

    /// Define a new macro as a string that will be expanded in-place
    ///
    /// # Arguments
    ///
    /// * `name` - The name of the new macro
    /// * `body` - The body of the new macro, this will be expanded when macro is executed
    pub fn define_macro(&mut self, name: String, body: String) {
        self.macros.insert(name, MacroType::String(body));
    }

    /// Define a new macro as any MacroType
    ///
    /// # Arguments
    ///
    /// * `name` - The name of the new macro
    /// * `macro_expansion` - The MacroType struct to use.
    pub fn define_macro_fn(&mut self, name: String, macro_expansion: MacroType) {
        self.macros.insert(name, macro_expansion);
    }

    /// This expands a macro definition, and it executes builtin functions, like define
    ///
    /// # Arguments
    ///
    /// * `macro_name` - Name of macro to expand if it exists
    /// * `args` - List of arguments parsed along with macro invokation (empty list if no arguments were parsed)
    fn expand_macro(&mut self, macro_name: &str, args: &mut [String]) -> String {
        let Some(macro_body) = self.macros.get(macro_name) else {
            return format!("{}", macro_name);
        };

        match macro_body {
            MacroType::String(body) => {
                let mut expanded = body.clone();
                // The expanded macro, should _probably_ be expanded again
                // The below is a okay _idea_, but I am not sure if I want to have this syntax for
                // functions defined in normal smp code
                for (i, arg) in args.iter().enumerate() {
                    let placeholder = format!("${}", i + 1);
                    expanded = expanded.replace(&placeholder, arg);
                }
                return expanded;
            }
            MacroType::Function(func) => {
                return func(self, macro_name, args);
            }
        }
    }

    /// Do macro processing of a input string
    ///
    /// This is the main function used for processing a input string,
    /// will return the processed string.
    /// Will be called recursively if needed.
    /// Subsequent calls will keep the state from the previous call.
    /// This includes macro definitions.
    ///
    /// # Arguments
    ///
    /// * `input` - The text to process
    pub fn process_input(&mut self, input: &str) -> String {
        let mut output = String::new();
        let mut state = ParserState::Normal;
        let mut macro_name = String::new();
        let mut macro_args = Vec::new();
        let mut argument = String::new();
        let mut macro_name_start = 0;

        let mut skip_next_line_ending = false;

        let mut in_quote_single = false;
        let mut in_quote_double = false;

        for (i, c) in input.char_indices() {
            highlight_debug!(input, macro_name_start, i);

            match state {
                ParserState::Normal => {
                    macro_name_start = i;

                    if skip_next_line_ending && (c == '\n') {
                        skip_next_line_ending = false;
                        continue;
                    }

                    if c.is_alphanumeric() {
                        state = ParserState::InMacro;
                        macro_name.push(c);
                    } else {
                        output.push(c);
                    }
                }
                ParserState::InMacro => {
                    if c.is_alphanumeric() || c == '_' {
                        macro_name.push(c);
                    } else if c == '(' {
                        state = ParserState::InMacroArgs;
                    } else {
                        if self.macros.contains_key(&macro_name) {
                            highlight_debug!("\x1b[32m\x1b[7m", input, (macro_name_start -> i));
                        }
                        if macro_name == "SNNL" {
                            skip_next_line_ending = c != '\n';
                        } else {
                            let expanded = self.expand_macro(&macro_name, &mut []);
                            output.push_str(&expanded);
                            output.push(c);
                        }
                        macro_name.clear();
                        state = ParserState::Normal;
                    }
                }
                ParserState::InMacroArgs => {
                    if c == ')' {
                        highlight_debug!("\x1b[32m\x1b[7m", input, (macro_name_start -> i));

                        macro_args.push(argument.trim().to_string());
                        let expanded = self.expand_macro(&macro_name, &mut macro_args);
                        output.push_str(&expanded);
                        state = ParserState::Normal;
                        macro_name.clear();
                        macro_args.clear();
                        argument.clear();
                    } else if c == ',' {
                        macro_args.push(argument.trim().to_string());
                        argument.clear();
                    } else {
                        argument.push(c);
                    }
                }
            }
        }

        // Handle cases where the text ends with a macro without arguments
        if !macro_name.is_empty() {
            output.push_str(&self.expand_macro(&macro_name, &mut []));
        }

        output
    }
}