use crate::macro_processor::error::SMPError;
use std::collections::HashMap;
use std::fs;
use std::process::Command;
// print only with debug_assertions
macro_rules! dprint {
($($x:tt)*) => {
#[cfg(debug_assertions)]
print!($($x)*)
}
}
// Point to one or more ranges of a string, useful for highlighting parts of string
macro_rules! highlight_debug {
($hi_col:expr, $str:expr $(, ($pos:tt -> $endpos:tt))*) => {
for (i, _c) in $str.char_indices() {
if false $(|| (i >= $pos) && (i < $endpos))* {
dprint!("{}{}\x1b[0m", $hi_col, _c);
} else {
dprint!("{}", _c);
}
}
dprint!("\n");
};
($str:expr, $pos:expr, $endpos:expr) => {
highlight_debug!("\x1b[7m", $str, ($pos -> $endpos))
};
($str:expr, $pos:expr) => {
highlight_debug!($str, $pos, $pos+1)
};
}
/// Builtin for defining a new macro
fn smp_builtin_define(
smp: &mut MacroProcessor,
macro_name: &str,
args: &mut [String],
) -> Result<String, SMPError> {
if args.len() < 1 {
return Ok(macro_name.to_string());
}
let arg0 = smp.process_input(&args[0])?;
if args.len() > 1 {
let arg1 = smp.process_input(&args[1])?;
smp.define_macro(arg0, MacroType::String(arg1));
} else {
smp.define_macro(arg0, MacroType::String(String::new()));
}
Ok(String::new())
}
/// If macro is defined, return second argument, else return third argument if provided
fn smp_builtin_ifdef(
smp: &mut MacroProcessor,
macro_name: &str,
args: &mut [String],
) -> Result<String, SMPError> {
if args.len() < 2 {
return Ok(macro_name.to_string());
}
// We need to expand the first argument here as well, but we need to make the parser
// support literal, and phrase strings
if smp.macros.contains_key(&args[0]) {
return smp.process_input(&args[1]);
}
if args.len() > 2 {
return smp.process_input(&args[2]);
}
Ok(String::new())
}
/// If macro is not defined, return second argument, else return third argument if provided
fn smp_builtin_ifndef(
smp: &mut MacroProcessor,
macro_name: &str,
args: &mut [String],
) -> Result<String, SMPError> {
if args.len() < 2 {
return Ok(macro_name.to_string());
}
// We need to expand the first argument here as well, but we need to make the parser
// support literal, and phrase strings
if !smp.macros.contains_key(&args[0]) {
return smp.process_input(&args[1]);
}
if args.len() > 2 {
return smp.process_input(&args[2]);
}
Ok(String::new())
}
/// If arguments are equal, return third argument, else return fourth argument if provided
fn smp_builtin_ifeq(
smp: &mut MacroProcessor,
macro_name: &str,
args: &mut [String],
) -> Result<String, SMPError> {
if args.len() < 3 {
return Ok(macro_name.to_string());
}
let arg0 = smp.process_input(&args[0])?;
let arg1 = smp.process_input(&args[1])?;
if arg0 == arg1 {
return smp.process_input(&args[2]);
}
if args.len() > 3 {
return smp.process_input(&args[3]);
}
Ok(String::new())
}
/// If arguments are not equal, return third argument, else return fourth argument if provided
fn smp_builtin_ifneq(
smp: &mut MacroProcessor,
macro_name: &str,
args: &mut [String],
) -> Result<String, SMPError> {
if args.len() < 3 {
return Ok(macro_name.to_string());
}
let arg0 = smp.process_input(&args[0])?;
let arg1 = smp.process_input(&args[1])?;
if arg0 != arg1 {
return smp.process_input(&args[2]);
}
if args.len() > 3 {
return smp.process_input(&args[3]);
}
return Ok(String::new());
}
/// Include a new file, and process it normally. There is no loop protection here!
fn smp_builtin_include(
smp: &mut MacroProcessor,
macro_name: &str,
args: &mut [String],
) -> Result<String, SMPError> {
if args.len() < 1 {
return Ok(macro_name.to_string());
}
let arg0 = smp.process_input(&args[0])?;
let input_file = fs::read_to_string(&arg0).map_err(|e| SMPError::IncludeError(2, e, arg0))?;
return smp.process_input(&input_file);
}
/// Include a new file verbatum, don't do ANY additional processing
fn smp_builtin_include_verbatum(
smp: &mut MacroProcessor,
macro_name: &str,
args: &mut [String],
) -> Result<String, SMPError> {
if args.len() < 1 {
return Ok(macro_name.to_string());
}
let arg0 = smp.process_input(&args[0])?;
fs::read_to_string(&arg0).map_err(|e| SMPError::IncludeError(2, e, arg0))
}
/// Simply execute argument as shell command
fn smp_builtin_shell(
smp: &mut MacroProcessor,
macro_name: &str,
args: &mut [String],
) -> Result<String, SMPError> {
if args.len() < 1 {
return Ok(macro_name.to_string());
}
let arg0 = smp.process_input(&args[0])?;
let res = Command::new("sh").arg("-c").arg(arg0).output();
match res {
Ok(output) => String::from_utf8(output.stdout)
.map_err(|e| SMPError::ShellCommandError(1, Box::new(e))),
Err(_) => Ok(String::new()),
}
}
/// Would like one that is better than this tbh
fn smp_builtin_expr(
smp: &mut MacroProcessor,
macro_name: &str,
args: &mut [String],
) -> Result<String, SMPError> {
if args.len() < 1 {
return Ok(macro_name.to_string());
}
for arg in args.iter_mut() {
*arg = smp.process_input(&arg)?;
}
let res = Command::new("expr").args(args).output();
match res {
Ok(output) => String::from_utf8(output.stdout)
.map_err(|e| SMPError::ShellCommandError(1, Box::new(e))),
Err(_) => Ok(String::new()),
}
}
/// Indent argument 2 by N spaces
fn smp_builtin_indent(
smp: &mut MacroProcessor,
_macro_name: &str,
args: &mut [String],
) -> Result<String, SMPError> {
let indent_size = args[0].parse::<u32>().unwrap_or(0);
let mut out = String::with_capacity(args[1].len());
for l in args[1].lines() {
let mut lin = String::with_capacity(indent_size.try_into().unwrap_or(0) + l.len());
if args.len() <= 2 || (args[2] != "skip_first") {
for _ in 0..indent_size {
lin.push(' ');
}
}
lin.push_str(&smp.process_input(&l)?);
out.push_str(&lin);
}
Ok(String::new())
}
/// Types of macros, this is to make it easy to store both functions and strings
#[derive(Clone)]
pub enum MacroType {
/// When expanded, the associated function will be expanded
Function(
fn(
smp: &mut MacroProcessor,
macro_name: &str,
args: &mut [String],
) -> Result<String, SMPError>,
),
/// Will be expanded in-place to the String
String(String),
}
/// Possible parser states
#[derive(Debug, PartialEq)]
enum ParserState {
Normal,
InMacro,
InMacroArgs,
DNL,
}
/// Defines a MacroProcessor object, with it's associated state
/// the state mostly includes the defined macros
#[derive(Clone)]
pub struct MacroProcessor {
/// All currently defined macros in this MacroProcessor
pub macros: HashMap<String, MacroType>,
}
impl MacroProcessor {
pub fn new() -> Self {
let mut smp = Self {
macros: HashMap::new(),
};
smp.define_builtins();
smp
}
/// Bootstrapping-function for defining all builtins,
/// the same way all other macros might be defined
fn define_builtins(&mut self) {
self.define_macro(
String::from("define"),
MacroType::Function(smp_builtin_define),
);
self.define_macro(
String::from("ifdef"),
MacroType::Function(smp_builtin_ifdef),
);
self.define_macro(
String::from("ifndef"),
MacroType::Function(smp_builtin_ifndef),
);
self.define_macro(String::from("ifeq"), MacroType::Function(smp_builtin_ifeq));
self.define_macro(
String::from("ifneq"),
MacroType::Function(smp_builtin_ifneq),
);
self.define_macro(
String::from("include"),
MacroType::Function(smp_builtin_include),
);
self.define_macro(
String::from("include_verbatum"),
MacroType::Function(smp_builtin_include_verbatum),
);
self.define_macro(
String::from("shell"),
MacroType::Function(smp_builtin_shell),
);
self.define_macro(
String::from("indent"),
MacroType::Function(smp_builtin_indent),
);
self.define_macro(String::from("expr"), MacroType::Function(smp_builtin_expr));
// format('Result id %d', 3282)
}
/// Define a new macro as a string that will be expanded in-place
///
/// # Arguments
///
/// * `name` - The name of the new macro
/// * `body` - The body of the new macro, this will be expanded when macro is executed
pub fn define_macro_string(&mut self, name: String, body: String) {
self.macros.insert(name, MacroType::String(body));
}
/// Define a new macro as any MacroType
///
/// # Arguments
///
/// * `name` - The name of the new macro
/// * `macro_expansion` - The MacroType struct to use.
pub fn define_macro(&mut self, name: String, macro_expansion: MacroType) {
self.macros.insert(name, macro_expansion);
}
/// This expands a macro definition, and it executes builtin functions, like define
///
/// # Arguments
///
/// * `macro_name` - Name of macro to expand if it exists
/// * `args` - List of arguments parsed along with macro invokation (empty list if no arguments were parsed)
fn expand_macro(&mut self, macro_name: &str, args: &mut [String]) -> Result<String, SMPError> {
let Some(macro_body) = self.macros.get(macro_name) else {
return Ok(format!("{}", macro_name));
};
match macro_body {
MacroType::String(body) => {
let mut expanded = body.clone();
// The expanded macro, should _probably_ be expanded again
// The below is a okay _idea_, but I am not sure if I want to have this syntax for
// functions defined in normal smp code
for (i, arg) in args.iter().enumerate() {
let placeholder = format!("${}", i + 1);
expanded = expanded.replace(&placeholder, arg);
}
self.process_input(&expanded)
}
MacroType::Function(func) => {
return func(self, macro_name, args);
}
MacroType::Array(vec) => return Ok(format!("Array[{}]", vec.len())),
}
}
/// Do macro processing of a input string
///
/// This is the main function used for processing a input string,
/// will return the processed string.
/// Will be called recursively if needed.
/// Subsequent calls will keep the state from the previous call.
/// This includes macro definitions.
///
/// # Arguments
///
/// * `input` - The text to process
pub fn process_input(&mut self, input: &str) -> Result<String, SMPError> {
let mut output = String::new();
let mut state = ParserState::Normal;
let mut macro_name = String::new();
let mut macro_args = Vec::new();
let mut argument = String::new();
let mut macro_name_start = 0;
let mut skip_next_line_ending = false;
let mut in_quote_single = false;
let mut in_quote_double = false;
let mut parens_level = 0;
for (i, c) in input.char_indices() {
highlight_debug!(input, macro_name_start, i);
match state {
ParserState::DNL => {
if c == '\n' {
state = ParserState::Normal;
}
}
ParserState::Normal => {
macro_name_start = i;
if skip_next_line_ending && (c == '\n') {
skip_next_line_ending = false;
continue;
}
if c.is_alphanumeric() {
state = ParserState::InMacro;
macro_name.push(c);
} else {
output.push(c);
}
}
ParserState::InMacro => {
if c.is_alphanumeric() || c == '_' {
macro_name.push(c);
} else if c == '(' {
parens_level += 1;
state = ParserState::InMacroArgs;
} else {
if self.macros.contains_key(¯o_name) {
highlight_debug!("\x1b[32m\x1b[7m", input, (macro_name_start -> i));
}
if macro_name == "SNNL" {
skip_next_line_ending = c != '\n';
} else if macro_name == "DNL" {
if c != '\n' {
state = ParserState::DNL;
}
macro_name.clear();
continue;
} else {
let expanded = self.expand_macro(¯o_name, &mut [])?;
output.push_str(&expanded);
output.push(c);
}
macro_name.clear();
state = ParserState::Normal;
}
}
ParserState::InMacroArgs => {
if (c == ')') && (parens_level == 1) {
highlight_debug!("\x1b[32m\x1b[7m", input, (macro_name_start -> i));
parens_level = 0;
macro_args.push(argument.trim().to_string());
let expanded = self.expand_macro(¯o_name, &mut macro_args)?;
output.push_str(&expanded);
state = ParserState::Normal;
macro_name.clear();
macro_args.clear();
argument.clear();
} else if (c == ',') && (parens_level == 1) {
macro_args.push(argument.trim().to_string());
argument.clear();
} else {
if c == '(' {
parens_level += 1;
}
if c == ')' {
parens_level -= 1;
}
argument.push(c);
}
}
}
}
// Handle cases where the text ends with a macro without arguments
if !macro_name.is_empty() {
output.push_str(&self.expand_macro(¯o_name, &mut [])?);
}
Ok(output)
}
}